Search results for "Neutrino experiments"
showing 10 items of 10 documents
A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
2013
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…
First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope
2013
A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.
Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Obser…
2016
This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size…
Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube
2020
The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …
Tau neutrinos in the next decade: from GeV to EeV
2022
Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
Searching for neutrino oscillation parameters in long baseline experiments
2016
Vihonen, Sampsa "Searching for neutrino oscillation parameters in long baseline experiments" in Proceedings, Magellan Workshop: Connecting Neutrino Physics and Astronomy / Dahmke, Stefan K.G., Meyer, Mikko, Vanhoefer, Laura (eds.), Deutsches Elektronen-Synchrotron, DESY : 2016 ; Magellan Workshop, 2016-03-17 - 2016-03-18, Hamburg Magellan Workshop, Hamburg, Germany, 17 Mar 2016 - 18 Mar 2016 ; DESY-PROC 65-70(2016). doi:10.3204/DESY-PROC-2016-05/8
First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope
2013
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…
Neutrino Physics with JUNO
2016
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…
Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions
2006
Presented by J. Nieves at the XX Max Born Symposium “Nuclear Effects in Neutrino Interactions”, Wrocław, Poland, December 7–10, 2005.
Phenomenology of non-standard neutrino interactions
2016
Today neutrino physics is in a privileged position within the fascinating field of particle physics. From the discovery of neutrino oscillations by Super-Kamiokande in 1998, the door to physics beyond the Standard Model (SM in what follows) has been opened. This fact implies that neutrinos have to be massive in opposition to the Standard Model assumption. However, this is not a surprise completely, but it was already hinted from theoretical and experimental observations in the two decades prior to the discovery of the oscillatory phenomenon, as neutrino masses included in unification models or the observed deficit of the atmospheric and solar neutrino fluxes. As a consequence of this new pa…