Search results for "Neutrino experiments"

showing 10 items of 10 documents

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

2013

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

AstrofísicaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrino experiments; neutrino astronomy; gamma ray bursts theoryPOINT SOURCESPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaREDSHIFTFluxFOS: Physical sciencesAstrophysics01 natural sciencesICECUBEneutrino astronomyneutrino experiments0103 physical sciencesgamma ray bursts theory010303 astronomy & astrophysicsNeutrino experimentsATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonGamma ray bursts theory010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomygamma ray bursts theory; neutrino astronomy; neutrino experimentsAstronomy and Astrophysicsgamma ray burstsCATALOGRedshiftNeutrino detectorNeutrino astronomyFISICA APLICADAneutrino experimentHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstSYSTEM
researchProduct

Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Obser…

2016

This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size…

AstronomyAstrophysicsNeutrino experiments ultra high energy cosmic rays cosmic ray experiments neutrino astronomy.01 natural sciencesASTROPHYSICAL SOURCESultra high energy cosmic raylaw.inventionIceCubeAstronomi astrofysik och kosmologimagnetic [deflection]lawAstronomy Astrophysics and Cosmologycosmic ray experiments; neutrino astronomy; neutrino experiments; ultra high energy cosmic rays; Astronomy and Astrophysics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAngular distanceAstrophysics::Instrumentation and Methods for AstrophysicsVHE [neutrino]GALACTIC MAGNETIC-FIELDcascadeAugerobservatorycosmic radiationCascadestackingcosmic ray experi- mentsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomenaphysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical Phenomenacosmic ray experimentFOS: Physical sciencesCosmic rayultra high energy cosmic raysSURFACE DETECTORTelescopeneutrino astronomyneutrino experiments0103 physical sciencesddc:530Angular resolutionHigh Energy PhysicsPierre Auger ObservatorySPECTRUMMuon010308 nuclear & particles physicsAstronomy and Astrophysicsflux [neutrino]ASTROFÍSICAPhysics and Astronomyangular resolutioncorrelationExperimental High Energy Physicsneutrino experimenttracks [muon]cosmic ray experiments
researchProduct

Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube

2020

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …

Astrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatoryneutrino astronomyneutrino experiments0103 physical sciencessiteAstrophysics::Galaxy Astrophysicsastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)densityneutrino astronomy; neutrino detectors; neutrino experiments010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicsflux [neutrino]redshiftRedshift surveyGalaxyRedshiftobservatoryNeutrino detectorPhysics and Astronomymultiplet13. Climate actioncorrelationPhysique des particules élémentairesIntergalactic travelHigh Energy Physics::ExperimentgalaxyNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomenaneutrino detectors
researchProduct

Tau neutrinos in the next decade: from GeV to EeV

2022

Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.

HIGH-ENERGY NEUTRINOSMAGNETIC-MOMENTAstrophysics and AstronomyNuclear and High Energy PhysicsRADIO PULSESPhysics::Instrumentation and Detectorstau neutrinosFOS: Physical sciencesCHERENKOV LIGHT YIELDGeV530High Energy Physics - Experimenttau neutrino theorySubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)neutrino experimentsSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Particle Physics - PhenomenologyAIR-SHOWERSLEPTON FLAVORastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)hep-exPhysicshep-phtau neutrinos; neutrino experiments; tau neutrino theorylandscapeCOSMIC-RAYSHigh Energy Physics - PhenomenologyQUANTUM-GRAVITYCHARGED-PARTICLES[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]beam dumpPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLORENTZ VIOLATION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Experiment
researchProduct

Searching for neutrino oscillation parameters in long baseline experiments

2016

Vihonen, Sampsa "Searching for neutrino oscillation parameters in long baseline experiments" in Proceedings, Magellan Workshop: Connecting Neutrino Physics and Astronomy / Dahmke, Stefan K.G., Meyer, Mikko, Vanhoefer, Laura (eds.), Deutsches Elektronen-Synchrotron, DESY : 2016 ; Magellan Workshop, 2016-03-17 - 2016-03-18, Hamburg Magellan Workshop, Hamburg, Germany, 17 Mar 2016 - 18 Mar 2016 ; DESY-PROC 65-70(2016). doi:10.3204/DESY-PROC-2016-05/8

High Energy Physics - Phenomenologyneutrino oscillationsHigh Energy Physics - Phenomenology (hep-ph)Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::Phenomenologylong baseline neutrino experimentsFOS: Physical sciencesHigh Energy Physics::Experiment
researchProduct

First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

PHOTINOAstrophysicsMASSIVE PARTICLES01 natural sciencesLIMITSDirect searchCANDIDATESPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilationdark matter detectors[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsAstrophysics::Instrumentation and Methods for AstrophysicsCAPTURELIGHTparticle physics - cosmology connectionWeakly interacting massive particlesneutrino experiments; particle physics - cosmology connection; dark matter detectors; supersymmetry and cosmologyFísica nuclearNeutrinosupersymmetry andAstrophysics - High Energy Astrophysical PhenomenaCosmology connectionsupersymmetry and cosmologyFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Supersymmetry and cosmologydark matter detectorAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeDark matterFOS: Physical sciencesddc:500.2neutrino experimentsSEARCH0103 physical sciencesDETECTORS010306 general physicsSelection (genetic algorithm)Dark matter detectors010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsNeutrino experimentsFISICA APLICADAParticle physics - cosmology connectionneutrino experimentHigh Energy Physics::ExperimentcosmologySYSTEM
researchProduct

Neutrino Physics with JUNO

2016

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…

Particle physicsSterile neutrinoNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsGeoneutrinoreactor neutrino experimentPhysics::Instrumentation and DetectorsSolar neutrinomedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciences7. Clean energy01 natural sciencesNOHigh Energy Physics - Experimentneutrino astronomyHigh Energy Physics - Experiment (hep-ex)neutrino physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino mass hierarchy reactor liquid scintillator010306 general physicsJiangmen Underground Neutrino Observatorymedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino physicInstrumentation and Detectors (physics.ins-det)Universereactor neutrino experimentslarge scintillator detectors; neutrino astronomy; neutrino physics; reactor neutrino experiments; Nuclear and High Energy PhysicsSupernovalarge scintillator detectors13. Climate actionPhysics::Space Physicslarge scintillator detectorHigh Energy Physics::ExperimentNeutrinoreactor neutrino experiments; large scintillator detectors; neutrino physics; neutrino astronomy
researchProduct

Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions

2006

Presented by J. Nieves at the XX Max Born Symposium “Nuclear Effects in Neutrino Interactions”, Wrocław, Poland, December 7–10, 2005.

UNESCO::FÍSICA::NucleónicaAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryUNESCO::FÍSICAFOS: Physical sciencesMonte Carlo cascade method:FÍSICA::Nucleónica [UNESCO]Nucleon emissionHigh Energy Physics - PhenomenologyNeutrino experimentsHigh Energy Physics - Phenomenology (hep-ph):FÍSICA [UNESCO]Monte Carlo cascade method ; Nucleon emission ; Neutrino experimentsNuclear Experiment
researchProduct

Phenomenology of non-standard neutrino interactions

2016

Today neutrino physics is in a privileged position within the fascinating field of particle physics. From the discovery of neutrino oscillations by Super-Kamiokande in 1998, the door to physics beyond the Standard Model (SM in what follows) has been opened. This fact implies that neutrinos have to be massive in opposition to the Standard Model assumption. However, this is not a surprise completely, but it was already hinted from theoretical and experimental observations in the two decades prior to the discovery of the oscillatory phenomenon, as neutrino masses included in unification models or the observed deficit of the atmospheric and solar neutrino fluxes. As a consequence of this new pa…

neutrino oscillationsnsi boundsnon-standard neutrino interactionsnon-unitarityHigh Energy Physics::PhenomenologyUNESCO::FÍSICA::Física de altas energías::Física teórica altas energíasneutrinoneutrino experimentsnsi constraints:FÍSICA::Física de altas energías::Física teórica altas energías [UNESCO]phenomenologyHigh Energy Physics::Experimentparticle physicsnon-unitary lepton mixing matrixseesaw modelsnsi
researchProduct